On C-variational solutions for Hamilton-Jacobi equations

نویسندگان

  • Olga Bernardi
  • Franco Cardin
چکیده

For evolutive Hamilton-Jacobi equations, we propose a refined definition of C-variational solution, adapted to Cauchy problems for continuous initial data. In this weaker framework we investigate the Markovian (or semigroup) property for these solutions. In the case of p-convex Hamiltonians, when variational solutions are known to be identical to viscosity solutions, we verify directly the Markovian property by using minmax techniques. In the non-convex case, we construct an explicit evolutive example where minmax and viscous solutions are different. Provided the initial data allow for the separation of variables, we also detect the Markovian property for convex-concave Hamiltonians. In this case, and for general initial data, we finally give upper and lower Hopf-type estimates for the variational solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Control of Hand, Foot and Mouth Disease Model using Variational Iteration Method

In this paper, the optimal control of transmission dynamics of hand, foot and mouth disease (HFMD), formulated by a compartmental deterministic SEIPR (Susceptible-Incubation (Exposed)- Infected - Post infection virus shedding - Recovered) model with vaccination and treatment as control parameters is considered. The objective function is based on the combination of minimizing the number of infec...

متن کامل

The Viscosity Subdiierential of the Sum of Two Functions in Banach Spaces I: First Order Case

We present a formula for the viscosity subdiierential of the sum of two uniformly continuous functions on smooth Banach spaces. This formula is deduced from a new variational principle with constraints. We obtain as a consequence a weak form of Preiss' theorem for uniformly continuous functions. We use these results to give simple proofs of some uniqueness results of viscosity solutions of Hami...

متن کامل

$(varphi_1, varphi_2)$-variational principle

In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm,  such that $f + g $ attains its strong minimum on $X. $ This result extends some of the  well-known varitional principles as that of Ekeland [On the variational principle,  J. Ma...

متن کامل

Boundary-Value Problems for Systems of Hamilton--Jacobi--Bellman Inclusions with Constraints

We study in this paper boundary-value problems for systems of Hamilton-Jacobi-Bellman firstorder partial differential equations and variational inequalities, the solutions of which are constrained to obey viability constraints. They are motivated by some control problems (such as impulse control) and financial mathematics. We shall prove the existence and uniqueness of such solutions in the cla...

متن کامل

A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-Jacobi equations

Let Ω��2 be an open set and f�C2(�) with f” > 0. In this note we prove that entropy solutions of Dtu+Dxf(u) = 0 belong to SBVloc(Ω). As a corollary we prove the same property for gradients of viscosity solutions of planar Hamilton–Jacobi PDEs with uniformly convex Hamiltonians. DOI: https://doi.org/10.1142/S0219891604000263 Posted at the Zurich Open Repository and Archive, University of Zurich ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009